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Introduction to Electron Theory of Solids

The electrons in the outermost orbital of the atom which constitute the solid, determine its
electrical properties. On the basis of electrical properties, solid can be broadly classified into insulators,
semi conductors and conductors. The electron theory of solids (which 1s applicable to all solids both
metals and non metals) aims to explam the structures and properties of solids through their electronic
structure. It explains the electrical, thermal and magnetic properties of solids. The theory has been
developed in three main stages.

1) The classical free electron theory (CFET)
11) The quantum free electron theory (QFET)
111) The Zone theory or Band theory of solids.

The classical free electron theory
This theory was proposed to account for the electrical conduction in metals by Drude in 1900. It
was extended by H.A. Lorentz n 1909. This theory was also known as Free electron theory of metals.
Metal atoms have one or more loosely bound valence electrons. Such electrons get detached
easily even with small thermal energy. The detached electrons are neither shared nor acquired by any of
the atoms of the metal. Hence they are free and just form a common fool.
The electrostatic interaction of detached electrons with the positive ion cores and with other electrons 1s
assumed to be negligible. A consequence of this assumption is that the detached electrons can move
freely everywhere within the confinements of the metal piece. Hence these electrons are called as free
electrons or conduction electrons. When an electric field is applied, free electrons will experience slow
drift motion in the positive direction of the field and produce a current in the metal.

Successes of Classical Free Electron Theory
1) It proved the validity of ohms law
2) It could give a satisfactory explanation to the mechanism of electrical current in conductors and
thermal conductivity of metals.
3) It explains optical properties of metals.
It derives the relation between electrical conductivity and thermal conductivity.

Failures:
1) Temperature dependence of resistivity of metals could not be established correctly.

2) Heat capacity and paramagnetic susceptibility of conduction electrons could not be explamed
successfully.
3) It could not vredict correct values to the mean free nath of electrons.



The electron quantum free theory

Somerfield developed this theory during 1928. He considered Drude’s assumption on the free electrons
as it 1s. In addition to that, the applied Pauli’s exclusion principle to the electron gas and applied Fermi-
Dirac statistics in place of Maxwell-Boltzmann statistics. The results of these modifications mdicated
that no all free electrons would contribute to the processes like electrical and thermal conductivities of
metals. Rather only a small fraction of the free electron gas of the metal would participate in such
properties.

Bloch'’s theorem

Crystalline solid consists of a lattice which i1s composed of a large number of 1onic cores
at regular intervals and the conduction electrons move throughout the lattice.

Let us consider the picture of the lattice n only one dimension, 1.e., only an array of ionic
cores along x-axis. If we plot the potential energy of a conduction electron as a position in the
lattice, the variation of potential energy is as shown m figure. The potential 1s mmimum at the
positive ion sites and maximum between the two ions.
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Periodic positive ion cores inside metallic crystals. b) One dimensional periodic potential in crystal.

The one tﬂlmensmn Schrodinger equation corresponding to this can be written as

__+3TmE-V(x)] y=0 = (1)

dx? Z1-
The periodic potential V(x) may be defined by means of the lattice constant ,,a™ as
V(x) = V(x+a) —(2)
Bloch considered the solution as
Vi x) = exp(kx)Uk(x) % 3)

Eqn (2) 1s known as Bloch function. Uy (X) 1s periodic with the periodicity of the crystal
lattice. The free electron wave 1s modulated by periodic function Ux(X) 1s periodic with the
periodicity of the crystal lattice. The free electron wave 1s modulated by periodic function U ().
For a lmear chain of atoms of length ,,L."" in one dimensional case with , N (= even) number of
atoms in the cham,



Ux(x) = Uk (xtNa) — (4)
From eqn (3) and eqn (4)
Pe(x+na) = Ug(x+Na) [k O]
= (M) y(x) @0
=y () k¥ —(5)
This 1s referred to as Bloch condition.



Now, _
Ve(x+Na)ye*(x+Na) = y(x) ey (x) et
= yx(X) ye*(x) €@
Ye(x+Na) P*(x+na) = P(x) P*(x) — (6)
This means that the electron is not located around any particular atom and the probability of
finding the electron is same throughout the crystal.

The Kronig-Penny Model

The periodic potential assumed by Kronig and Penny is shown m Figure. 1e., a series of
rectangular wells of width ,,a” and are placed at a separation of b. in the regions where 0<x<a, the
potential energy 1s zero and i regions such as —b < x <0, the potential energy is V.

One dimensional periodic potential assumed by Kronig and Penny

The main features of the model and its predictions can be explained quahtatively

Main features of the model

A. Schrodinger equation:

The dynamical behavior of electrons in the Kronig-Penny model is represented by the following
§%}1rodinger equation,

__H[?m] Ey=0 for0<x<a
dx ? 2
And
+[2] E=-V ¥=0 for—b <x<0 — (1)
"gx_' 2 0
Let us assume that total energy ,,E” of the electron under consideration is less than V.
Further, let us substitute (13= and 2= YO-E) — (2)
Where o and B are real quantities.
Now Eq(1) becomes
+ o2y=0, for 0<x<a
}{}Pd
d;bz — BAy=0, for-b<x<0 — (3)

These equations can be solved with the help of block theorem. The final solution of eq (3) 1s
given in the form of the following condition.



Psinea + cosaa =coska — (4)
aa

Where P = m 0@ 1s scattermg power of the potential barrier and V), 1s barrier strength. That
means, eq (3) will have a solution only when the condition (4) is satisfied.

Graph of aa versus £sinae + cosga
aa

For the best understanding of the meaning of eq(4), let us consider the plot of the
condition(4) i1e. L.H.S versus oa. Since the values of coska on R.H.s of eq (4) lie between +1 and
-1, oa (which 1s a measure of energy) can take only those values for which the total left hand side
(L.H.S) value lies between -1 and +1. Other values are not allowed. This means that energy E i1s
restricted to lie within certain ranges which form the allowed energy bands or zones.

Plot of the left hand side of eq (4) as a function of aa for p =3zl;* The solid and broken lines on the abscissa (¢a- axis)

correspond to allowed and forbidden energy regions of the energy spectrum respectively that are plotted in fig.

Conclusions of the graph
1. The energy spectrum consists of alternative regions of allowed and vacant bands.

Forbidden band implies that the energy levels that lie in this region are not occupied by
the electrons.

2. The allowed (shaded) bands are narrowest for low values of energy and become broader
as energy increases, the unallowed (forbidden) bands becoming narrower.

3. a) For P=0 (i.e. on the extreme left), the whole energy spectrum is quasi-contmuous. That
1s all allowed bands are joined together forming an almost contmuum.
b) However, the width of a particular allowed band decreases with increase m the value
of P. As P— o0, the allowed energy bands compress mto simple energy levels and thus
result ma line spectrum.

Origin of Energy band formation in solids

In an isolated atom, the electrons are tightly bound and have discrete, sharp energy levels
[Figure]. When two identical atoms are brought closer, the outermost orbits of these atoms
overlap and mteract.

When the wave functions of the electrons of the different atoms begin to overlap considerably,
the energy levels split mto two



(b)

N energy levels
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. Splitting of energy levels due to interatomic interaction

If more atoms are bought together, more levels are formed and for a solid of N atoms, each of the

energy levels of an atom splits mto N levels of energy [Figure].
The levels are so close together that they form an almost contmuous band. The width of

this band depends on the degree of overlap of the electrons of adjacent atoms and 1s largest for

the outermost atomic electrons.

In a solid, many atoms are brought together that the split energy levels form a set of
energy bands of very closely spaced levels with forbidden energy gaps between them.

Overlapping of these atoms occurs for smaller equilibrium spacing ro.
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. With decrease of interatomic spacing overlapping of energy bands take place

The band corresponding to outermost orbit 1s called conduction band and the next band 1s called
valence band. The gap between these two allowed bands is called forbidden energy gap or band
gap. According to the width of the gap between the bands and band occupation by electrons all
solids can be classified broadly mto three groups namely, conductors, semiconductors and

msulators

Classification of materials into conductors, semiconductors and insulators

On the basis of band theory, solids can be broadly classified mto three categories, viz, msulators,
semiconductors and conductors. Their band structures can be as shown 1n figure.



Insulators

1. In case of msulators, the forbidden gap 1s very wide. Due to this fact electrons cannot jump
from valence band to conduction band.

2. They have completely filled valence band and completely empty conduction band.

3. The resistivity of sulators is very high.

4. Insulators are bad conductors of electricity.
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.Valence and conduction bands of insulator separated by large band gap

Semiconductors

1. In semiconductors, the band gap 1s very small (0.7 eV for germanium and 1.1 eV for silicon).
2. At Ok, these are no electrons in the conduction band and the valence band is completely filled.
As the temperature mcreases, electrons from the valence band jump nto conduction band.

3. The resistivity varies from 10 ** to 10"Q meter.



4. They have electrical properties between those of msulators and conductors.
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Conductors

1. Incase of conductors, there is no forbidden gap and the valence band conduction band
overlaps each other.

2. Plenty of free electrons are available for electrical conduction.

3. They posses very low resistivity and very high conductivity values.

4. Metals ¢ like copper, ron etc. are best examples of conductors.
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